- Messages
- 616
- Reaction score
- 2,961
- Points
- 253
When a total amount of work W is done on any object, the kinetic energy of that object changes by a quantity W - if negative work is done on the object, the kinetic energy changes by a negative amount and if positive work is done on the object it's energy changes by a positive amount.
Suppose you throw an object upwards, gravity is the only force that does any work on the object. That work is negative, so the kinetic energy of the object decreases until the object comes to a stop. When it falls down, gravity does positive work on the system thus increasing it's kinetic energy.
In this case, taking the first situation, the force is constant at magnitude F, over the entire displacement s. Thus, the work done by that force is Fs. By the
Work-Kinetic Energy theorem, this is equal to the increase in kinetic energy of the system. This value is given as 4 Joules (8-4 = change in KE = +4 Joules).
In the upcoming situation, the force is 2F, displaced through a distance 2s. Thus, the total work done is 4Fs. This is also the change in kinetic energy of the object.
From above, we know that Fs is 4 Joules, so 4Fs = 4*4 = 16 Joules increase. From 4 Joules, the increase of 16 Joules takes it to 20 Joules = B.
Well, I just noticed unique111's solution, and I have to say as far as I know it's absolutely correct, (so no need for the disclaimer, unique111! it's totally right!)
Good Luck for all your exams!
okay so u meanwhen work is done against gravity its negative and the kinetic energy decreases right just confirming (developing a concept actually )