- Messages
- 316
- Reaction score
- 399
- Points
- 73
dy/dx = 4 (6-2x)^-½
at x = 1, the gradient of the tangent to the curve is:
dy/dx ( at x=1 )= 4(6-2(1))^-½ = 2
gradient of normal = -1 / gradient of tangent
= -1/2
equ of normal at P,
y - 8 = -1/2 (x - 1)
2y + x = 17 -- (1)
When it cuts x-axis at Q, y=0, so x = 17
Q(17,0)
When it cuts y-axis at R, x = 0, y = 17/2
R (0, 17/2 )
mid point =( (17+0)/2 , (8.5+0)/2 ) = (17/2 , 17/4) Ans.
(b) integrate dy/dx
y = -4(6-2x)^½ +c
when x = 1, y = 8, so,
8 = -4(6-2)^½ +c
8= -4*2 + c
c = 16
so y = -4(6-2x)^½ +16
Thank-U bro.!